.. _sgr-example: Example: Defining A Coordinate Frame for the Sgr Dwarf ------------------------------------------------------ This document describes in detail how to subclass and define a custom spherical coordinate frame, as discussed in :doc:`frames` and the docstring for `~astropy.coordinates.BaseCoordinateFrame`. In this example, we will define a coordinate system defined by the plane of orbit of the Sagittarius Dwarf Galaxy (hereafter Sgr; as defined in Majewski et al. 2003). The Sgr coordinate system is often referred to in terms of two angular coordinates, :math:`\Lambda,B`. We need to define a subclass of `~astropy.coordinates.BaseCoordinateFrame` that knows the names and units of the coordinate system angles in each of the supported representations. In this case we support `~astropy.coordinates.SphericalRepresentation` with "Lambda" and "Beta". Then we have to define the transformation from this coordinate system to some other built-in system. Here we will use Galactic coordinates, represented by the `~astropy.coordinates.Galactic` class. The first step is to create a new class, which we'll call ``Sagittarius`` and make it a subclass of `~astropy.coordinates.BaseCoordinateFrame`:: import numpy as np from numpy import cos, sin from astropy.coordinates import frame_transform_graph from astropy.coordinates.angles import rotation_matrix import astropy.coordinates as coord import astropy.units as u class Sagittarius(coord.BaseCoordinateFrame): """ A Heliocentric spherical coordinate system defined by the orbit of the Sagittarius dwarf galaxy, as described in http://adsabs.harvard.edu/abs/2003ApJ...599.1082M and further explained in http://www.astro.virginia.edu/~srm4n/Sgr/. Parameters ---------- representation : `BaseRepresentation` or None A representation object or None to have no data (or use the other keywords) Lambda : `Angle`, optional, must be keyword The longitude-like angle corresponding to Sagittarius' orbit. Beta : `Angle`, optional, must be keyword The latitude-like angle corresponding to Sagittarius' orbit. distance : `Quantity`, optional, must be keyword The Distance for this object along the line-of-sight. """ default_representation = coord.SphericalRepresentation frame_specific_representation_info = { 'spherical': [coord.RepresentationMapping('lon', 'Lambda'), coord.RepresentationMapping('lat', 'Beta'), coord.RepresentationMapping('distance', 'distance')], 'unitspherical': [coord.RepresentationMapping('lon', 'Lambda'), coord.RepresentationMapping('lat', 'Beta')] } Line by line, the first few are simply imports. Next we define the class as a subclass of `~astropy.coordinates.BaseCoordinateFrame`. Then we include a descriptive docstring. The final lines are class-level attributes that specify the default representation for the data and mappings from the attribute names used by representation objects to the names that are to be used by ``Sagittarius``. In this case we override the names in the spherical representations but don't do anything with other representations like cartesian or cylindrical. Next we have to define the transformation to some other built-in coordinate system; we will use Galactic coordinates. We can do this by defining functions that return transformation matrices, or by simply defining a function that accepts a coordinate and returns a new coordinate in the new system. We'll start by constructing the rotation matrix, using the helper function ``rotation_matrix``:: # Define the Euler angles (from Law & Majewski 2010) SGR_PHI = np.radians(180+3.75) SGR_THETA = np.radians(90-13.46) SGR_PSI = np.radians(180+14.111534) # Generate the rotation matrix using the x-convention (see Goldstein) D = rotation_matrix(SGR_PHI, "z", unit=u.radian) C = rotation_matrix(SGR_THETA, "x", unit=u.radian) B = rotation_matrix(SGR_PSI, "z", unit=u.radian) SGR_MATRIX = np.array(B.dot(C).dot(D)) This is done at the module level, since it will be used by both the transformation from Sgr to Galactic as well as the inverse from Galactic to Sgr. Now we can define our first transformation function:: # Galactic to Sgr coordinates @frame_transform_graph.transform(coord.FunctionTransform, coord.Galactic, Sagittarius) def galactic_to_sgr(gal_coord, sgr_frame): """ Compute the transformation from Galactic spherical to heliocentric Sgr coordinates. """ l = np.atleast_1d(gal_coord.l.radian) b = np.atleast_1d(gal_coord.b.radian) X = np.cos(b)*np.cos(l) Y = np.cos(b)*np.sin(l) Z = np.sin(b) # Calculate X,Y,Z,distance in the Sgr system Xs, Ys, Zs = SGR_MATRIX.dot(np.array([X, Y, Z])) Zs = -Zs # Calculate the angular coordinates lambda,beta Lambda = np.arctan2(Ys,Xs)*u.radian Lambda[Lambda < 0] = Lambda[Lambda < 0] + 2.*np.pi*u.radian Beta = np.arcsin(Zs/np.sqrt(Xs*Xs+Ys*Ys+Zs*Zs))*u.radian return Sagittarius(Lambda=Lambda, Beta=Beta, distance=gal_coord.distance) The decorator ``@frame_transform_graph.transform(coord.FunctionTransform, coord.Galactic, Sagittarius)`` registers this function on the ``frame_transform_graph`` as a transformation. Inside the function, we simply follow the same procedure as detailed by David Law's `transformation code `_. Note that in this case, both coordinate systems are heliocentric, so we can simply copy any distance from the `~astropy.coordinates.Galactic` object. We then register the inverse transformation by using the transpose of the rotation matrix (which is faster to compute than the inverse):: # Sgr to Galactic coordinates @frame_transform_graph.transform(coord.FunctionTransform, Sagittarius, coord.Galactic) def sgr_to_galactic(sgr_coord, gal_frame): """ Compute the transformation from heliocentric Sgr coordinates to spherical Galactic. """ L = np.atleast_1d(sgr_coord.Lambda.radian) B = np.atleast_1d(sgr_coord.Beta.radian) Xs = cos(B)*cos(L) Ys = cos(B)*sin(L) Zs = sin(B) Zs = -Zs X, Y, Z = SGR_MATRIX.T.dot(np.array([Xs, Ys, Zs])) l = np.arctan2(Y,X)*u.radian b = np.arcsin(Z/np.sqrt(X*X+Y*Y+Z*Z))*u.radian l[l<=0] += 2*np.pi*u.radian return coord.Galactic(l=l, b=b, distance=sgr_coord.distance) Now that we've registered these transformations between ``Sagittarius`` and `~astropy.coordinates.Galactic`, we can transform between *any* coordinate system and ``Sagittarius`` (as long as the other system has a path to transform to `~astropy.coordinates.Galactic`). For example, to transform from ICRS coordinates to ``Sagittarius``, we simply:: >>> import astropy.units as u >>> import astropy.coordinates as coord >>> icrs = coord.ICRS(280.161732*u.degree, 11.91934*u.degree) >>> icrs.transform_to(Sagittarius) # doctest: +SKIP The complete code for the above example is included below for reference. See Also ======== * Majewski et al. 2003, "A Two Micron All Sky Survey View of the Sagittarius Dwarf Galaxy. I. Morphology of the Sagittarius Core and Tidal Arms", http://arxiv.org/abs/astro-ph/0304198 * Law & Majewski 2010, "The Sagittarius Dwarf Galaxy: A Model for Evolution in a Triaxial Milky Way Halo", http://arxiv.org/abs/1003.1132 * David Law's Sgr info page http://www.astro.virginia.edu/~srm4n/Sgr/ Complete Code for Example ========================= .. literalinclude:: sgr-example.py :linenos: :language: python